Displaying 421 – 440 of 674

Showing per page

Tietze Extension Theorem for n-dimensional Spaces

Karol Pąk (2014)

Formalized Mathematics

In this article we prove the Tietze extension theorem for an arbitrary convex compact subset of εn with a non-empty interior. This theorem states that, if T is a normal topological space, X is a closed subset of T, and A is a convex compact subset of εn with a non-empty interior, then a continuous function f : X → A can be extended to a continuous function g : T → εn. Additionally we show that a subset A is replaceable by an arbitrary subset of a topological space that is homeomorphic with a convex...

Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces

Mallasamudram Kuppusamy Uma, Elango Roja, Ganesan Balasubramanian (2008)

Mathematica Bohemica

In this paper a new class of fuzzy topological spaces called pairwise ordered fuzzy extremally disconnected spaces is introduced. Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces has been discussed as in the paper of Kubiak (1987) besides proving several other propositions and lemmas.

Tightness and resolvability

Angelo Bella, Viacheslav I. Malykhin (1998)

Commentationes Mathematicae Universitatis Carolinae

We prove resolvability and maximal resolvability of topological spaces having countable tightness with some additional properties. For this purpose, we introduce some new versions of countable tightness. We also construct a couple of examples of irresolvable spaces.

Tightness and π-character in centered spaces

Murray Bell (1999)

Colloquium Mathematicae

We continue an investigation into centered spaces, a generalization of dyadic spaces. The presence of large Cantor cubes in centered spaces is deduced from tightness considerations. It follows that for centered spaces X, πχ(X) = t(X), and if X has uncountable tightness, then t(X) = supκ : 2 κ ⊂ X. The relationships between 9 popular cardinal functions for the class of centered spaces are justified. An example is constructed which shows, unlike the dyadic and polyadic properties, that the centered...

Tightness of compact spaces is preserved by the t -equivalence relation

Oleg Okunev (2002)

Commentationes Mathematicae Universitatis Carolinae

We prove that if there is an open mapping from a subspace of C p ( X ) onto C p ( Y ) , then Y is a countable union of images of closed subspaces of finite powers of X under finite-valued upper semicontinuous mappings. This allows, in particular, to prove that if X and Y are t -equivalent compact spaces, then X and Y have the same tightness, and that, assuming 2 𝔱 > 𝔠 , if X and Y are t -equivalent compact spaces and X is sequential, then Y is sequential.

Toeplitz flows with pure point spectrum

A. Iwanik (1996)

Studia Mathematica

We construct strictly ergodic 0-1 Toeplitz flows with pure point spectrum and irrational eigenvalues. It is also shown that the property of being regular is not a measure-theoretic invariant for strictly ergodic Toeplitz flows.

Topological calculus for separating points from closed sets by maps

Javier Gutiérrez García, Tomasz Kubiak (2012)

Czechoslovak Mathematical Journal

Pointfree formulas for three kinds of separating points for closed sets by maps are given. These formulas allow controlling the amount of factors of the target product space so that it does not exceed the weight of the embeddable space. In literature, the question of how many factors of the target product are needed for the embedding has only been considered for specific spaces. Our approach is algebraic in character and can thus be viewed as a contribution to Kuratowski's topological calculus.

Currently displaying 421 – 440 of 674