A note on Raghavan-Reilly's pairwise paracompactness.
Se ed sono spazi topologici, una funzione è detta regolarmente chiusa [5] se essa trasforma ogni insieme regolarmente chiuso di in un insieme chiuso di . Si dimostra che una funzione regolarmente chiusa risulta chiusa se è normale.
Separately continuous functions are shown to have certain properties related to connectedness.
Let n be an integer with n ≥ 2 and be an infinite collection of (n-1)-connected continua. We compare the homotopy groups of with those of (Σ denotes the unreduced suspension) via the Freudenthal Suspension Theorem. An application to homology groups of the countable product of the n(≥ 2)-sphere is given.
The proofs of Theorems 2.1, 2.2 and 2.3 from [Olatinwo M.O., Some results on multi-valued weakly jungck mappings in b-metric space, Cent. Eur. J. Math., 2008, 6(4), 610–621] base on faulty evaluations. We give here correct but weaker versions of these theorems.
In this paper, we give the mapping theorems on -spaces and -metrizable spaces by means of some sequence-covering mappings, mssc-mappings and -mappings.
Let be a topological property. A space is said to be star P if whenever is an open cover of , there exists a subspace with property such that . In this note, we construct a Tychonoff pseudocompact SCE-space which is not star Lindelöf, which gives a negative answer to a question of Rojas-Sánchez and Tamariz-Mascarúa.