Displaying 541 – 560 of 1528

Showing per page

On H ˇ n -bubbles in n-dimensional compacta

Umed Karimov, Dušan Repovš (1998)

Colloquium Mathematicae

A topological space X is called an H ˇ n -bubble (n is a natural number, H ˇ n is Čech cohomology with integer coefficients) if its n-dimensional cohomology H ˇ n ( X ) is nontrivial and the n-dimensional cohomology of every proper subspace is trivial. The main results of our paper are: (1) Any compact metrizable H ˇ n -bubble is locally connected; (2) There exists a 2-dimensional 2-acyclic compact metrizable ANR which does not contain any H ˇ 2 -bubbles; and (3) Every n-acyclic finite-dimensional L H ˇ n -trivial metrizable compactum...

On half-completion and bicompletion of quasi-metric spaces

Elena Alemany, Salvador Romaguera (1996)

Commentationes Mathematicae Universitatis Carolinae

We characterize the quasi-metric spaces which have a quasi-metric half-completion and deduce that each paracompact co-stable quasi-metric space having a quasi-metric half-completion is metrizable. We also characterize the quasi-metric spaces whose bicompletion is quasi-metric and it is shown that the bicompletion of each quasi-metric compatible with a quasi-metrizable space X is quasi-metric if and only if X is finite.

On Hamel bases in Banach spaces

Juan Carlos Ferrando (2014)

Studia Mathematica

It is shown that no infinite-dimensional Banach space can have a weakly K-analytic Hamel basis. As consequences, (i) no infinite-dimensional weakly analytic separable Banach space E has a Hamel basis C-embedded in E(weak), and (ii) no infinite-dimensional Banach space has a weakly pseudocompact Hamel basis. Among other results, it is also shown that there exist noncomplete normed barrelled spaces with closed discrete Hamel bases of arbitrarily large cardinality.

On Hattori spaces

A. Bouziad, E. Sukhacheva (2017)

Commentationes Mathematicae Universitatis Carolinae

For a subset A of the real line , Hattori space H ( A ) is a topological space whose underlying point set is the reals and whose topology is defined as follows: points from A are given the usual Euclidean neighborhoods while remaining points are given the neighborhoods of the Sorgenfrey line. In this paper, among other things, we give conditions on A which are sufficient and necessary for H ( A ) to be respectively almost Čech-complete, Čech-complete, quasicomplete, Čech-analytic and weakly separated (in...

On hereditarily normal topological groups

(2012)

Fundamenta Mathematicae

We investigate hereditarily normal topological groups and their subspaces. We prove that every compact subspace of a hereditarily normal topological group is metrizable. To prove this statement we first show that a hereditarily normal topological group with a non-trivial convergent sequence has G δ -diagonal. This implies, in particular, that every countably compact subspace of a hereditarily normal topological group with a non-trivial convergent sequence is metrizable. Another corollary is that under...

On hereditary and product-stable quotient maps

Friedhelm Schwarz, Sibylle Weck-Schwarz (1992)

Commentationes Mathematicae Universitatis Carolinae

It is shown that the quotient maps of a monotopological construct A which are preserved by pullbacks along embeddings, projections, or arbitrary morphisms, can be characterized by being quotient maps in appropriate extensions of A.

On hereditary normality of ω * , Kunen points and character ω 1

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

We show that ω * { p } is not normal, if p is a limit point of some countable subset of ω * , consisting of points of character ω 1 . Moreover, such a point p is a Kunen point and a super Kunen point.

Currently displaying 541 – 560 of 1528