Two notes on formalized topology
Doubling measures appear in relation to quasiconformal mappings of the unit disk of the complex plane onto itself. Each such map determines a homeomorphism of the unit circle on itself, and the problem arises, which mappings f can occur as boundary mappings?
It is shown that no generalized Luzin space condenses onto the unit interval and that the discrete sum of copies of the Cantor set consistently does not condense onto a connected compact space. This answers two questions from [2].
We establish two fixed point theorems for certain mappings of contractive type.
We show that there is a nowhere ccc σ-compact space which has a remote point. We show that it is consistent to have a non-compact σ-compact separable space X such that every point of the remainder is a limit of a countable discrete subset of non-isolated points of X. This example shows that one cannot prove in ZFC that every locally compact non-compact space has discrete weak P-points.
We consider the spaces called , constructed on the set of all finite sequences of natural numbers using ultrafilters to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that is homogeneous if and only if all the ultrafilters have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to (i.e., for all ). It follows that for a Ramsey ultrafilter , is a topological group....
We point out two theorems on the Scorza Dragoni property for multifunctions. As an application, in particular, we improve a Carathéodory selection theorem by A. Cellina [4], by removing a compactness assumption.
We prove a Dichotomy Theorem: for each Hausdorff compactification of an arbitrary topological group , the remainder is either pseudocompact or Lindelöf. It follows that if a remainder of a topological group is paracompact or Dieudonne complete, then the remainder is Lindelöf, and the group is a paracompact -space. This answers a question in A.V. Arhangel’skii, Some connections between properties of topological groups and of their remainders, Moscow Univ. Math. Bull. 54:3 (1999), 1–6. It is...
A refined common generalization of known theorems (Arhangel’skii, Michael, Popov and Rančin) on the Fréchetness of products is proved. A new characterization, in terms of products, of strongly Fréchet topologies is provided.