Displaying 801 – 820 of 1528

Showing per page

On quasi-p-bounded subsets

M. Sanchis, A. Tamariz-Mascarúa (1999)

Colloquium Mathematicae

The notion of quasi-p-boundedness for p ∈ ω * is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in ω * can be defined in terms of quasi-p-pseudocompactness. For p ∈ ω * , we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × P R K ( p ) is bounded in X × P R K ( p ) , if and only if c l β ( X × P R K ( p ) ) ( B × P R K ( p ) ) = c l β X B × β ( ω ) , where P R K ( p ) is the set of Rudin-Keisler predecessors of p.

On quasi-uniform space valued semi-continuous functions

Tomasz Kubiak, María Angeles de Prada Vicente (2009)

Commentationes Mathematicae Universitatis Carolinae

F. van Gool [Comment. Math. Univ. Carolin. 33 (1992), 505–523] has introduced the concept of lower semicontinuity for functions with values in a quasi-uniform space ( R , 𝒰 ) . This note provides a purely topological view at the basic ideas of van Gool. The lower semicontinuity of van Gool appears to be just the continuity with respect to the topology T ( 𝒰 ) generated by the quasi-uniformity 𝒰 , so that many of his preparatory results become consequences of standard topological facts. In particular, when the order...

On reflexive closed set lattices

Zhongqiang Yang, Dong Sheng Zhao (2010)

Commentationes Mathematicae Universitatis Carolinae

For a topological space X , let S ( X ) denote the set of all closed subsets in X , and let C ( X ) denote the set of all continuous maps f : X X . A family 𝒜 S ( X ) is called reflexive if there exists 𝒞 C ( X ) such that 𝒜 = { A S ( X ) : f ( A ) A for every f 𝒞 } . Every reflexive family of closed sets in space X forms a sub complete lattice of the lattice of all closed sets in X . In this paper, we continue to study the reflexive families of closed sets in various types of topological spaces. More necessary and sufficient conditions for certain families of closed...

On regular Stein neighborhoods of a union of two totally real planes in ℂ²

Tadej Starčič (2016)

Annales Polonici Mathematici

We find regular Stein neighborhoods of a union of totally real planes M = (A+iI)ℝ² and N = ℝ² in ℂ², provided that the entries of a real 2 × 2 matrix A are sufficiently small. A key step in our proof is a local construction of a suitable function ρ near the origin. The sublevel sets of ρ are strongly Levi pseudoconvex and admit strong deformation retraction to M ∪ N.

Currently displaying 801 – 820 of 1528