Displaying 881 – 900 of 8496

Showing per page

All CAT(0) boundaries of a group of the form H × K are CE equivalent

Christopher Mooney (2009)

Fundamenta Mathematicae

M. Bestvina has shown that for any given torsion-free CAT(0) group G, all of its boundaries are shape equivalent. He then posed the question of whether they satisfy the stronger condition of being cell-like equivalent. In this article we prove that the answer is "Yes" in the situation where the group in question splits as a direct product with infinite factors. We accomplish this by proving an interesting theorem in shape theory.

Almost 1-1 extensions of Furstenberg-Weiss type and applications to Toeplitz flows

T. Downarowicz, Y. Lacroix (1998)

Studia Mathematica

Let ( Z , T Z ) be a minimal non-periodic flow which is either symbolic or strictly ergodic. Any topological extension of ( Z , T Z ) is Borel isomorphic to an almost 1-1 extension of ( Z , T Z ) . Moreover, this isomorphism preserves the affine-topological structure of the invariant measures. The above extends a theorem of Furstenberg-Weiss (1989). As an application we prove that any measure-preserving transformation which admits infinitely many rational eigenvalues is measure-theoretically isomorphic to a strictly ergodic toeplitz...

Almost all submaximal groups are paracompact and σ-discrete

O. Alas, I. Protasov, M. Tkačenko, V. Tkachuk, R. Wilson, I. Yaschenko (1998)

Fundamenta Mathematicae

We prove that any topological group of a non-measurable cardinality is hereditarily paracompact and strongly σ-discrete as soon as it is submaximal. Consequently, such a group is zero-dimensional. Examples of uncountable maximal separable spaces are constructed in ZFC.

Almost closed sets and topologies they determine

Vladimir Vladimirovich Tkachuk, Ivan V. Yashchenko (2001)

Commentationes Mathematicae Universitatis Carolinae

We prove that every countably compact AP-space is Fréchet-Urysohn. It is also established that if X is a paracompact space and C p ( X ) is AP, then X is a Hurewicz space. We show that every scattered space is WAP and give an example of a hereditarily WAP-space which is not an AP-space.

Almost continuity vs closure continuity

B. A. Saleemi, Naseer Shahzad, M. A. Alghamdi (2001)

Archivum Mathematicum

We provide an answer to a question: under what conditions almost continuity in the sense of Husain implies closure continuity?

Currently displaying 881 – 900 of 8496