Approximation of Quasiconvex Functions, and Lower Semicontinuity of Multiple Integrals.
This paper provides a convergent numerical approximation of the Pareto optimal set for finite-horizon multiobjective optimal control problems in which the objective space is not necessarily convex. Our approach is based on Viability Theory. We first introduce a set-valued return function V and show that the epigraph of V equals the viability kernel of a certain related augmented dynamical system. We then introduce an approximate set-valued return function with finite set-values as the solution of...
2000 Mathematics Subject Classification: 26E25, 41A35, 41A36, 47H04, 54C65.The paper is an updated survey of our work on the approximation of univariate set-valued functions by samples-based linear approximation operators, beyond the results reported in our previous overview. Our approach is to adapt operators for real-valued functions to set-valued functions, by replacing operations between numbers by operations between sets. For set-valued functions with compact convex images we use Minkowski...
We shall show several approximation theorems for the Hausdorff compactifications of metrizable spaces or locally compact Hausdorff spaces. It is shown that every compactification of the Euclidean n-space ℝⁿ is the supremum of some compactifications homeomorphic to a subspace of . Moreover, the following are equivalent for any connected locally compact Hausdorff space X: (i) X has no two-point compactifications, (ii) every compactification of X is the supremum of some compactifications whose remainder...
Some notions of limit weaker than the topological one are studied.
We investigate absolute retracts for hereditarily unicoherent continua, and also the continua that have the arc property of Kelley (i.e., the continua that satisfy both the property of Kelley and the arc approximation property). Among other results we prove that each absolute retract for hereditarily unicoherent continua (for tree-like continua, for λ-dendroids, for dendroids) has the arc property of Kelley.