Displaying 1081 – 1100 of 1151

Showing per page

Approximation of Univariate Set-Valued Functions - an Overview

Dyn, Nira, Farkhi, Elza, Mokhov, Alona (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 26E25, 41A35, 41A36, 47H04, 54C65.The paper is an updated survey of our work on the approximation of univariate set-valued functions by samples-based linear approximation operators, beyond the results reported in our previous overview. Our approach is to adapt operators for real-valued functions to set-valued functions, by replacing operations between numbers by operations between sets. For set-valued functions with compact convex images we use Minkowski...

Approximation theorems for compactifications

Kotaro Mine (2011)

Colloquium Mathematicae

We shall show several approximation theorems for the Hausdorff compactifications of metrizable spaces or locally compact Hausdorff spaces. It is shown that every compactification of the Euclidean n-space ℝⁿ is the supremum of some compactifications homeomorphic to a subspace of n + 1 . Moreover, the following are equivalent for any connected locally compact Hausdorff space X: (i) X has no two-point compactifications, (ii) every compactification of X is the supremum of some compactifications whose remainder...

Arc property of Kelley and absolute retracts for hereditarily unicoherent continua

Janusz J. Charatonik, Włodzimierz J. Charatonik, Janusz R. Prajs (2003)

Colloquium Mathematicae

We investigate absolute retracts for hereditarily unicoherent continua, and also the continua that have the arc property of Kelley (i.e., the continua that satisfy both the property of Kelley and the arc approximation property). Among other results we prove that each absolute retract for hereditarily unicoherent continua (for tree-like continua, for λ-dendroids, for dendroids) has the arc property of Kelley.

Currently displaying 1081 – 1100 of 1151