Regularity properties of functional equations.
En el párrafo 1 se describe el isomorfismo uniforme existente entre la compleción de Hausdorff de un espacio métrico y la compleción de Weil del espacio uniforme separado asociado al espacio métrico.En el párrafo 2 se construye la compleción reducida de un espacio seudométrico y se describe el isomorfismo uniforme existente entre la compleción reducida de un espacio seudométrico y la compleción reducida del espacio uniforme asociado al espacio seudométrico.Finalmente, a lo largo del párrafo 3, se...
We study some relations whose compatibility with the topology is equivalent to normality or to complete regularity.
Let 𝒦 be a class of finite relational structures. We define ℰ𝒦 to be the class of finite relational structures A such that A/E ∈ 𝒦, where E is an equivalence relation defined on the structure A. Adding arbitrary linear orderings to structures from ℰ𝒦, we get the class 𝒪ℰ𝒦. If we add linear orderings to structures from ℰ𝒦 such that each E-equivalence class is an interval then we get the class 𝒞ℰ[𝒦*]. We provide a list of Fraïssé classes among ℰ𝒦, 𝒪ℰ𝒦 and 𝒞ℰ[𝒦*]. In addition, we classify...
Let X be a Tikhonov space, C(X) be the space of all continuous real-valued functions defined on X, and CL(X×ℝ) be the hyperspace of all nonempty closed subsets of X×ℝ. We prove the following result: Let X be a locally connected locally compact paracompact space, and let F ∈ CL(X×ℝ). Then F is in the closure of C(X) in CL(X×ℝ) with the Vietoris topology if and only if: (1) for every x ∈ X, F(x) is nonempty; (2) for every x ∈ X, F(x) is connected; (3) for every isolated x ∈ X, F(x) is a singleton...