On -images of locally separable metric spaces.
A space is said to be -metrizable if it has a -discrete -base. The behavior of -metrizable spaces under certain types of mappings is studied. In particular we characterize strongly -separable spaces as those which are the image of a -metrizable space under a perfect mapping. Each Tychonoff space can be represented as the image of a -metrizable space under an open continuous mapping. A question posed by Arhangel’skii regarding if a -metrizable topological group must be metrizable receives...
We continue the study of almost--resolvable spaces beginning in A. Tamariz-Mascar’ua, H. Villegas-Rodr’ıguez, Spaces of continuous functions, box products and almost--resoluble spaces, Comment. Math. Univ. Carolin. 43 (2002), no. 4, 687–705. We prove in ZFC: (1) every crowded space with countable tightness and every space with -weight is hereditarily almost--resolvable, (2) every crowded paracompact space which is the closed preimage of a crowded Fréchet space in such a way that the...