Displaying 1541 – 1560 of 8496

Showing per page

Coherent ultrafilters and nonhomogeneity

Jan Starý (2015)

Commentationes Mathematicae Universitatis Carolinae

We introduce the notion of a coherent P -ultrafilter on a complete ccc Boolean algebra, strengthening the notion of a P -point on ω , and show that these ultrafilters exist generically under 𝔠 = 𝔡 . This improves the known existence result of Ketonen [On the existence of P -points in the Stone-Čech compactification of integers, Fund. Math. 92 (1976), 91–94]. Similarly, the existence theorem of Canjar [On the generic existence of special ultrafilters, Proc. Amer. Math. Soc. 110 (1990), no. 1, 233–241] can...

Coincidence and fixed point theorems for nonlinear hybrid generalized contractions

H. K. Pathak, Shin Min Kang, Yeol Je Cho (1998)

Czechoslovak Mathematical Journal

In this paper we first prove some coincidence and fixed point theorems for nonlinear hybrid generalized contractions on metric spaces. Secondly, using the concept of an asymptotically regular sequence, we give some fixed point theorems for Kannan type multi-valued mappings on metric spaces. Our main results improve and extend several known results proved by other authors.

Coincidence of Vietoris and Wijsman Topologies: A New Proof

Holá, L’. (1997)

Serdica Mathematical Journal

Let (X, d) be a metric space and CL(X) the family of all nonempty closed subsets of X. We provide a new proof of the fact that the coincidence of the Vietoris and Wijsman topologies induced by the metric d forces X to be a compact space. In the literature only a more involved and indirect proof using the proximal topology is known. Here we do not need this intermediate step. Moreover we prove that (X, d) is boundedly compact if and only if the bounded Vietoris and Wijsman topologies on CL(X) coincide....

Coincidence point theorems in certain topological spaces

Jong Soo Jung, Yeol Je Cho, Shin Min Kang, Yong Kab Choi, Byung Soo Lee (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we establish some new versions of coincidence point theorems for single-valued and multi-valued mappings in F-type topological space. As applications, we utilize our main theorems to prove coincidence point theorems and fixed point theorems for single-valued and multi-valued mappings in fuzzy metric spaces and probabilistic metric spaces.

Coincidence points and maximal elements of multifunctions on convex spaces

Sehie Park (1995)

Commentationes Mathematicae Universitatis Carolinae

Generalized and unified versions of coincidence or maximal element theorems of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa, Kim and Tan are obtained. Our arguments are based on our recent works on a broad class of multifunctions containing composites of acyclic maps defined on convex subsets of Hausdorff topological vector spaces.

Coincidence points and R -weakly commuting maps

Naseer Shahzad, Tayyab Kamran (2001)

Archivum Mathematicum

In this paper we extend the concept of R -weak commutativity to the setting of single-valued and multivalued mappings. We also establish a coincidence theorem for pairs of R -weakly commuting single-valued and multivalued mappings satisfying a contractive type condition.

Currently displaying 1541 – 1560 of 8496