Concerning products of proximally fine uniform spaces
We prove that if and δ are the Hausdorff metric and the radial metric on the space ⁿ of star bodies in ℝ, with 0 in the kernel and with radial function positive and continuous, then a family ⊂ ⁿ that is meager with respect to need not be meager with respect to δ. Further, we show that both the family of fractal star bodies and its complement are dense in ⁿ with respect to δ.
We consider when one-to-one continuous mappings can improve normality-type and compactness-type properties of topological spaces. In particular, for any Tychonoff non-pseudocompact space there is a such that can be condensed onto a normal (-compact) space if and only if there is no measurable cardinal. For any Tychonoff space and any cardinal there is a Tychonoff space which preserves many properties of and such that any one-to-one continuous image of , , contains a closed copy...
Let be a Tychonoff (regular) paratopological group or algebra over a field or ring or a topological semigroup. If and , then there exists a Tychonoff (regular) topology such that and is a paratopological group, algebra over or a topological semigroup respectively.
This paper deals with the existence of non constant real valued functions on a topological space X. The main results are related to closed covers and order properties.