The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
242
Let (X, d) be a metric space and CL(X) the family of all
nonempty closed subsets of X. We provide a new proof of the fact that the
coincidence of the Vietoris and Wijsman topologies induced by the metric
d forces X to be a compact space. In the literature only a more involved
and indirect proof using the proximal topology is known. Here we do not
need this intermediate step. Moreover we prove that (X, d) is boundedly
compact if and only if the bounded Vietoris and Wijsman topologies on
CL(X) coincide....
It is shown that every metrizable consonant space is a Cantor set-selector. Some applications are derived from this fact, also the relationship is discussed in the framework of hyperspaces and Prohorov spaces.
Let be a metric continuum. Let denote the hyperspace of nonempty subsets of with at most elements. We say that the continuum has unique hyperspace provided that the following implication holds: if is a continuum and is homeomorphic to , then is homeomorphic to . In this paper we prove the following results: (1) if is an indecomposable continuum such that each nondegenerate proper subcontinuum of is an arc, then has unique hyperspace , and (2) let be an arcwise connected...
For a space , we denote by , and the hyperspaces of non-empty closed, compact, and subsets of cardinality of , respectively, with their Vietoris topology. For spaces and , is the space of continuous functions from to with its pointwise convergence topology. We analyze in this article when , and have continuous selections for a space of the form , where is zero-dimensional and is a strongly zero-dimensional metrizable space. We prove that is weakly orderable if and...
Let be a Hausdorff space and let be one of the hyperspaces , , or ( a positive integer) with the Vietoris topology. We study the following disconnectedness properties for : extremal disconnectedness, being a -space, -space or weak -space and hereditary disconnectedness. Our main result states: if is Hausdorff and is a closed subset such that (a) both and are totally disconnected, (b) the quotient is hereditarily disconnected, then is hereditarily disconnected. We also...
Currently displaying 41 –
60 of
242