On recurrent functions.
In the paper we obtain several characteristics of pre- of strongly preirresolute topological vector spaces and show that the extreme point of a convex subset of a strongly preirresolute topological vector space lies on the boundary.
Let X be a Polish space and Y be a separable metric space. For a fixed ξ < ω₁, consider a family of Baire-ξ functions. Answering a question of Tomasz Natkaniec, we show that if for a function f: X → Y, the set is finite for every x ∈ X, then f itself is necessarily Baire-ξ. The proof is based on a characterization of sets which can be interesting in its own right.
We extend a theorem of S. Claytor in order to characterize the Peano generalized continua which are embeddable into the 2-sphere. We also give a characterization of the Peano generalized continua which admit closed embeddings in the Euclidean plane.
We consider the question of preservation of Baire and weakly Baire category under images and preimages of certain kind of functions. It is known that Baire category is preserved under image of quasi-continuous feebly open surjections. In order to extend this result, we introduce a strictly larger class of quasi-continuous functions, i.e. the class of quasi-interior continuous functions. We show that Baire and weakly Baire categories are preserved under image of feebly open quasi-interior continuous...