The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 15 of 15

Showing per page

A strengthening of the Katětov-Tong insertion theorem

Tomasz Kubiak (1993)

Commentationes Mathematicae Universitatis Carolinae

Normal spaces are characterized in terms of an insertion type theorem, which implies the Katětov-Tong theorem. The proof actually provides a simple necessary and sufficient condition for the insertion of an ordered pair of lower and upper semicontinuous functions between two comparable real-valued functions. As a consequence of the latter, we obtain a characterization of completely normal spaces by real-valued functions.

A topology on inequalities.

D'Aristotile, Anna Maria, Fiorenza, Alberto (2006)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Algebras of Borel measurable functions

Michał Morayne (1992)

Fundamenta Mathematicae

We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.

Currently displaying 1 – 15 of 15

Page 1