The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The following properties of C[0,1] are proved here. Let T: C[0,1] → Y be a disjointness preserving bijection onto an arbitrary vector lattice Y. Then the inverse operator is also disjointness preserving, the operator T is regular, and the vector lattice Y is order isomorphic to C[0,1]. In particular if Y is a normed lattice, then T is also automatically norm continuous. A major step needed for proving these properties is provided by Theorem 3.1 asserting that T satisfies some technical condition...
We characterize clean elements of and show that is clean if and only if there exists a clopen sublocale in such that . Also, we prove that is clean if and only if has a clean prime ideal. Then, according to the results about we immediately get results about
We prove that the topographic map structure of upper semicontinuous functions, defined in terms of classical connected components of its level sets, and of functions of bounded variation (or a generalization, the WBV functions), defined in terms of M-connected components of its level sets, coincides when the function is a continuous function in WBV. Both function spaces are frequently used as models for images. Thus, if the domain Ω' of the image is Jordan domain, a rectangle, for instance, and...
The -property of a Riesz space (real vector lattice) is: For each sequence of positive elements of , there is a sequence of positive reals, and , with for each . This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when “” obtains for a Riesz space of continuous real-valued functions . A basic result is: For discrete , has iff the cardinal , Rothberger’s bounding number. Consequences and...
In the paper the existing results concerning a special kind of trajectories and the theory of first return continuous functions connected with them are used to examine some algebraic properties of classes of functions. To that end we define a new class of functions (denoted ) contained between the families (widely described in literature) of Darboux Baire 1 functions () and connectivity functions (). The solutions to our problems are based, among other, on the suitable construction of the ring,...
Currently displaying 1 –
8 of
8