The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We continue the study of 1/2-homogeneity of the hyperspace suspension of continua. We prove that if X is a decomposable continuum and its hyperspace suspension is 1/2-homogeneous, then X must be continuum chainable. We also characterize 1/2-homogeneity of the hyperspace suspension for several classes of continua, including: continua containing a free arc, atriodic and decomposable continua, and decomposable irreducible continua about a finite set.
We construct a cohomological index of the Fuller type for set-valued flows in normed linear spaces satisfying the properties of existence, excision, additivity, homotopy and topological invariance. In particular, the constructed index detects periodic orbits and stationary points of set-valued dynamical systems, i.e., those generated by differential inclusions. The basic methods to calculate the index are also presented.
We prove a decomposition theorem for a class of continua for which F. B.. Jones's set function 𝓣 is continuous. This gives a partial answer to a question of D. Bellamy.
The main result of this paper is that for n = 3,4,5 and k = n-2, every Borsuk continuous set-valued map of the closed ball in the n-dimensional Euclidean space with values which are one-point sets or sets homeomorphic to the k-sphere has a fixed point. Our approach fails for (k,n) = (1,4). A relevant counterexample (for the homological method, not for the fixed point conjecture) is indicated.
Currently displaying 1 –
20 of
400