Page 1

Displaying 1 – 20 of 20

Showing per page

Hereditarily indecomposable inverse limits of graphs

K. Kawamura, H. M. Tuncali, E. D. Tymchatyn (2005)

Fundamenta Mathematicae

We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map f ε : G G which is ε-close to f such that the inverse limit ( G , f ε ) is hereditarily indecomposable.

Hereditarily weakly confluent induced mappings are homeomorphisms

Janusz Charatonik, Włodzimierz Charatonik (1998)

Colloquium Mathematicae

For a given mapping f between continua we consider the induced mappings between the corresponding hyperspaces of closed subsets or of subcontinua. It is shown that if either of the two induced mappings is hereditarily weakly confluent (or hereditarily confluent, or hereditarily monotone, or atomic), then f is a homeomorphism, and consequently so are both the induced mappings. Similar results are obtained for mappings between cones over the domain and over the range continua.

Homeomorphisms of composants of Knaster continua

Sonja Štimac (2002)

Fundamenta Mathematicae

The Knaster continuum K p is defined as the inverse limit of the pth degree tent map. On every composant of the Knaster continuum we introduce an order and we consider some special points of the composant. These are used to describe the structure of the composants. We then prove that, for any integer p ≥ 2, all composants of K p having no endpoints are homeomorphic. This generalizes Bandt’s result which concerns the case p = 2.

Homeomorphisms of inverse limit spaces of one-dimensional maps

Marcy Barge, Beverly Diamond (1995)

Fundamenta Mathematicae

We present a new technique for showing that inverse limit spaces of certain one-dimensional Markov maps are not homeomorphic. In particular, the inverse limit spaces for the three maps from the tent family having periodic kneading sequence of length five are not homeomorphic.

Homotopy properties of curves

Janusz Jerzy Charatonik, Alejandro Illanes (1998)

Commentationes Mathematicae Universitatis Carolinae

Conditions are investigated that imply noncontractibility of curves. In particular, a plane noncontractible dendroid is constructed which contains no homotopically fixed subset. A new concept of a homotopically steady subset of a space is introduced and its connections with other related concepts are studied.

Homotopy types of one-dimensional Peano continua

Katsuya Eda (2010)

Fundamenta Mathematicae

Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homomorphism from the fundamental group of X to that of Y is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.

Hyperspaces of Peano continua of euclidean spaces

Helma Gladdines, Jan van Mill (1993)

Fundamenta Mathematicae

If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We prove that for n ≥ 3 the space L ( n ) is homeomorphic to B , where B denotes the pseudo-boundary of the Hilbert cube Q.

Hyperspaces of two-dimensional continua

Michael Levin, Yaki Sternfeld (1996)

Fundamenta Mathematicae

Let X be a compact metric space and let C(X) denote the space of subcontinua of X with the Hausdorff metric. It is proved that every two-dimensional continuum X contains, for every n ≥ 1, a one-dimensional subcontinuum T n with d i m C ( T n ) n . This implies that X contains a compact one-dimensional subset T with dim C (T) = ∞.

Hyperspaces of universal curves and 2-cells are true F σ δ -sets

Paweł Krupski (2002)

Colloquium Mathematicae

It is shown that the following hyperspaces, endowed with the Hausdorff metric, are true absolute F σ δ -sets: (1) ℳ ²₁(X) of Sierpiński universal curves in a locally compact metric space X, provided ℳ ²₁(X) ≠ ∅ ; (2) ℳ ³₁(X) of Menger universal curves in a locally compact metric space X, provided ℳ ³₁(X) ≠ ∅ ; (3) 2-cells in the plane.

Currently displaying 1 – 20 of 20

Page 1