The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 80

Showing per page

An irrational problem

Franklin D. Tall (2002)

Fundamenta Mathematicae

Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define X M to be X ∩ M with topology generated by U M : U M . Suppose X M is homeomorphic to the irrationals; must X = X M ? We have partial results. We also answer a question of Gruenhage by showing that if X M is homeomorphic to the “Long Cantor Set”, then X = X M .

Classical-type characterizations of non-metrizable ANE(n)-spaces

Valentin Gutev, Vesko Valov (1994)

Fundamenta Mathematicae

The Kuratowski-Dugundji theorem that a metrizable space is an absolute (neighborhood) extensor in dimension n iff it is L C n - 1 C n - 1 (resp., L C n - 1 ) is extended to a class of non-metrizable absolute (neighborhood) extensors in dimension n. On this base, several facts concerning metrizable extensors are established for non-metrizable ones.

Continuous decompositions of Peano plane continua into pseudo-arcs

Janusz Prajs (1998)

Fundamenta Mathematicae

Locally planar Peano continua admitting continuous decomposition into pseudo-arcs (into acyclic curves) are characterized as those with no local separating point. This extends the well-known result of Lewis and Walsh on a continuous decomposition of the plane into pseudo-arcs.

External Characterization of I-Favorable Spaces

Valov, Vesko (2011)

Mathematica Balkanica New Series

1991 AMS Math. Subj. Class.:Primary 54C10; Secondary 54F65We provide both a spectral and an internal characterizations of arbitrary !-favorable spaces with respect to co-zero sets. As a corollary we establish that any product of compact !-favorable spaces with respect to co-zero sets is also !-favorable with respect to co-zero sets. We also prove that every C* -embedded !-favorable with respect to co-zero sets subspace of an extremally disconnected space is extremally disconnected.

Currently displaying 1 – 20 of 80

Page 1 Next