The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 9

Displaying 161 – 179 of 179

Showing per page

Hopfian and strongly hopfian manifolds

Young Im, Yongkuk Kim (1999)

Fundamenta Mathematicae

Let p: M → B be a proper surjective map defined on an (n+2)-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C’ and C’ ∖ O is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if χ(N) ≠ 0 or H 1 ( N ) 2

Hurewicz-Serre theorem in extension theory

M. Cencelj, J. Dydak, A. Mitra, A. Vavpetič (2008)

Fundamenta Mathematicae

The paper is devoted to generalizations of the Cencelj-Dranishnikov theorems relating extension properties of nilpotent CW complexes to their homology groups. Here are the main results of the paper: Theorem 0.1. Let L be a nilpotent CW complex and F the homotopy fiber of the inclusion i of L into its infinite symmetric product SP(L). If X is a metrizable space such that X τ K ( H k ( L ) , k ) for all k ≥ 1, then X τ K ( π k ( F ) , k ) and X τ K ( π k ( L ) , k ) for all k ≥ . Theorem 0.2. Let X be a metrizable space such that dim(X) < ∞ or X ∈ ANR. Suppose...

Currently displaying 161 – 179 of 179

Previous Page 9