The search session has expired. Please query the service again.
Displaying 2101 –
2120 of
4977
We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.
We prove that the mapping class group and the pure mapping class group of closed non-orientable surfaces with punctures are generated by involutions.
We study the orientation preserving involutions of the orientable 3-dimensional handlebody , for any genus g. A complete classification of such involutions is given in terms of their fixed points.
The standard P. A. Smith theory of p-group actions on spheres, disks, and euclidean spaces is extended to the case of p-group actions on tori (i.e., products of circles) and coupled with topological surgery theory to give a complete topological classification, valid in all dimensions, of the locally linear, orientation-reversing, involutions on tori with fixed point set of codimension one.
Given a group π, we use involutory Hopf π-coalgebras to define a scalar invariant of flat π-bundles over 3-manifolds. When π = 1, this invariant equals the one for 3-manifolds constructed by Kuperberg from involutory Hopf algebras. We give examples which show that this invariant is non-trivial.
We show the irreducibility of some unitary representations of the group of symplectomorphisms and the group of contactomorphisms.
In [12] Petrunin proves that a compact metric space X admits an intrinsic isometry into En if and only if X is a pro-Euclidean space of rank at most n, meaning that X can be written as a “nice” inverse limit of polyhedra. He also shows that either case implies that X has covering dimension at most n. The purpose of this paper is to extend these results to include both embeddings and spaces which are proper instead of compact. The main result of this paper is that any pro-Euclidean space of rank...
We provide a classification of isometries of systolic complexes corresponding to the classification of isometries of CAT(0)-spaces. We prove that any isometry of a systolic complex either fixes the barycentre of some simplex (elliptic case) or stabilizes a thick geodesic (hyperbolic case). This leads to an alternative proof of the fact that finitely generated abelian subgroups of systolic groups are undistorted.
Currently displaying 2101 –
2120 of
4977