The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 4977

Showing per page

A homological selection theorem implying a division theorem for Q-manifolds

Taras Banakh, Robert Cauty (2007)

Banach Center Publications

We prove that a space M with Disjoint Disk Property is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. This implies that the product M × I² of a space M with the disk is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. The proof of these theorems exploits the homological characterization of Q-manifolds due to Daverman and Walsh, combined with the existence of G-stable points in C-spaces. To establish the existence of such points we prove (and afterward...

A Lagrangian representation of tangles II

David Cimasoni, Vladimir Turaev (2006)

Fundamenta Mathematicae

The present paper is a continuation of our previous paper [Topology 44 (2005), 747-767], where we extended the Burau representation to oriented tangles. We now study further properties of this construction.

A lattice of finite-type invariants of virtual knots

Micah W. Chrisman (2014)

Banach Center Publications

We construct an infinite commutative lattice of groups whose dual spaces give Kauffman finite-type invariants of long virtual knots. The lattice is based "horizontally" upon the Polyak algebra and extended "vertically" using Manturov's functorial map f. For each n, the n-th vertical line in the lattice contains an infinite-dimensional subspace of Kauffman finite-type invariants of degree n. Moreover, the lattice contains infinitely many inequivalent extensions of the Conway polynomial to long virtual...

Currently displaying 141 – 160 of 4977