The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We describe a combinatorial algorithm for constructing all orientable 3-manifolds with a given standard bidimensional spine by making use of the idea of bijoin (Bandieri and Gagliardi (1982), Graselli (1985)) over a suitable pseudosimplicial triangulation of the spine.
For a knot with a strong inversion induced by an unknotting tunnel, we have a double covering projection branched over a trivial knot , where is the axis of . Then a set is called a -curve. We construct -curves and the cyclic branched coverings over -curves, having two non-isotopic Heegaard decompositions which are one stable equivalent.
Currently displaying 1 –
20 of
30