The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
643
K. Habiro gave a neccesary and sufficient condition for knots to have the same Vassiliev invariants in terms of -moves. In this paper we give another geometric condition in terms of Brunnian local moves. The proof is simple and self-contained.
We present an elementary description of Khovanov's homology of tangles [K2], in the spirit of Viro's paper [V]. The formulation here is over the polynomial ring ℤ[c], unlike [K2] where the theory was presented over the integers only.
We introduce a new braid-theoretic framework with which to understand the Legendrian and transversal classification of knots, namely a Legendrian Markov Theorem without Stabilization which induces an associated transversal Markov Theorem without Stabilization. We establish the existence of a nontrivial knot-type specific Legendrian and transversal MTWS by enhancing the Legendrian mountain range for the (2,3)-cable of a (2,3)-torus knot provided by Etnyre and Honda, and showing that elementary negative...
We consider the classical problem of a position of n-dimensional manifold Mⁿ in . We show that we can define the fundamental (n+1)-cycle and the shadow fundamental (n+2)-cycle for a fundamental quandle of a knotting . In particular, we show that for any fixed quandle, quandle coloring, and shadow quandle coloring, of a diagram of Mⁿ embedded in we have (n+1)- and (n+2)-(co)cycle invariants (i.e. invariant under Roseman moves).
Currently displaying 101 –
120 of
643