The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Homotopie régulière inactive et engouffrement symplectique

François Laudenbach (1986)

Annales de l'institut Fourier

Une homotopie régulière ϕ t : Δ ( M , ω ) , t [ 0 , 1 ] , dans une variété symplectique est dite inactive si en chaque point le déplacement infinitésimal est ω -orthogonal à l’espace tangent de l’objet déplacé. Si Δ est un polyèdre de M 2 n de dimension < n et si U est un ouvert de M , toute homotopie de Δ M jusqu’à Δ U est déformable en une homotopie régulière inactive. On donne une application à l’engouffrement en géométrie symplectique.

Currently displaying 1 – 1 of 1

Page 1