The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Real algebraic actions on projective spaces - A survey

Ted Petrie (1973)

Annales de l'institut Fourier

Let G be a compact lie group. We introduce the set S G ( Y ) for every smooth G manifold Y . It consists of equivalence classes of pair ( X , f ) where f : X Y is a G map which defines a homotopy equivalence from X to Y . Two pairs ( X i , f i ) , for i = 0 , 1 , are equivalent if there is a G homotopy equivalence φ : X 0 X 1 such that f 0 is G homotopic to f 1 φ .Properties of the set S G ( Y ) and related to the representation of G on the tangent spaces of X and Y at the fixed points. For the case G = S 1 and Y is the S 1 manifold defined by a “linear” S 1 action on complex...

Currently displaying 1 – 4 of 4

Page 1