Displaying 201 – 220 of 5443

Showing per page

A nilpotent Lie algebra and eigenvalue estimates

Jacek Dziubański, Andrzej Hulanicki, Joe Jenkins (1995)

Colloquium Mathematicae

The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on n with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.

A noncommutative 2-sphere generated by the quantum complex plane

Ismael Cohen, Elmar Wagner (2012)

Banach Center Publications

S. L. Woronowicz's theory of C*-algebras generated by unbounded elements is applied to q-normal operators satisfying the defining relation of the quantum complex plane. The unique non-degenerate C*-algebra of bounded operators generated by a q-normal operator is computed and an abstract description is given by using crossed product algebras. If the spectrum of the modulus of the q-normal operator is the positive half line, this C*-algebra will be considered as the algebra of continuous functions...

A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology.

J. I. Díaz, L. Tello (1999)

Collectanea Mathematica

We present some results on the mathematical treatment of a global two-dimensional diffusive climate model. The model is based on a long time averaged energy balance and leads to a nonlinear parabolic equation for the averaged surface temperature. The spatial domain is a compact two-dimensional Riemannian manifold without boundary simulating the Earth. We prove the existence of bounded weak solutions via a fixed point argument. Although, the uniqueness of solutions may fail, in general, we give a...

A nonlinear periodic system with nonsmooth potential of indefinite sign

Michael E. Filippakis, Nikolaos S. Papageorgiou (2006)

Archivum Mathematicum

In this paper we consider a nonlinear periodic system driven by the vector ordinary p -Laplacian and having a nonsmooth locally Lipschitz potential, which is positively homogeneous. Using a variational approach which exploits the homogeneity of the potential, we establish the existence of a nonconstant solution.

A nonlinear Poisson transform for Einstein metrics on product spaces

Olivier Biquard, Rafe Mazzeo (2011)

Journal of the European Mathematical Society

We consider the Einstein deformations of the reducible rank two symmetric spaces of noncompact type. If M is the product of any two real, complex, quaternionic or octonionic hyperbolic spaces, we prove that the family of nearby Einstein metrics is parametrized by certain new geometric structures on the Furstenberg boundary of M .

A nonsmooth exponential

Esteban Andruchow (2003)

Studia Mathematica

Let ℳ be a type II₁ von Neumann algebra, τ a trace in ℳ, and L²(ℳ,τ) the GNS Hilbert space of τ. If L²(ℳ,τ)₊ is the completion of the set s a of selfadjoint elements, then each element ξ ∈ L²(ℳ,τ)₊ gives rise to a selfadjoint unbounded operator L ξ on L²(ℳ,τ). In this note we show that the exponential exp: L²(ℳ,τ)₊ → L²(ℳ,τ), e x p ( ξ ) = e i L ξ , is continuous but not differentiable. The same holds for the Cayley transform C ( ξ ) = ( L ξ - i ) ( L ξ + i ) - 1 . We also show that the unitary group U L ² ( , τ ) with the strong operator topology is not an embedded submanifold...

A Note on Coercivity of Lower Semicontinuous Functions and Nonsmooth Critical Point Theory

Corvellec, J. (1996)

Serdica Mathematical Journal

The first motivation for this note is to obtain a general version of the following result: let E be a Banach space and f : E → R be a differentiable function, bounded below and satisfying the Palais-Smale condition; then, f is coercive, i.e., f(x) goes to infinity as ||x|| goes to infinity. In recent years, many variants and extensions of this result appeared, see [3], [5], [6], [9], [14], [18], [19] and the references therein. A general result of this type was given in [3, Theorem 5.1] for a lower...

A Note on Differentiability of Lipschitz Maps

Rafał Górak (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We show that every Lipschitz map defined on an open subset of the Banach space C(K), where K is a scattered compactum, with values in a Banach space with the Radon-Nikodym property, has a point of Fréchet differentiability. This is a strengthening of the result of Lindenstrauss and Preiss who proved that for countable compacta. As a consequence of the above and a result of Arvanitakis we prove that Lipschitz functions on certain function spaces are Gâteaux differentiable.

A note on flat noncommutative connections

Tomasz Brzeziński (2012)

Banach Center Publications

It is proven that every flat connection or covariant derivative ∇ on a left A-module M (with respect to the universal differential calculus) induces a right A-module structure on M so that ∇ is a bimodule connection on M or M is a flat differentiable bimodule. Similarly a flat hom-connection on a right A-module M induces a compatible left A-action.

A note on global Nash subvarieties and Artin-Mazur theorem

Alessandro Tancredi, Alberto Tognoli (2004)

Bollettino dell'Unione Matematica Italiana

It is shown that every connected global Nash subvariety of R n is Nash isomorphic to a connected component of an algebraic variety that, in the compact case, can be chosen with only two connected components arbitrarily near each other. Some examples which state the limits of the given results and of the used tools are provided.

Currently displaying 201 – 220 of 5443