Aproximation of Z2-cocycles and shift dynamical systems.
Let Gbar = G{nt, nt | nt+1, t ≥ 0} be a subgroup of all roots of unity generated by exp(2πi/nt}, t ≥ 0, and let τ: (X, β, μ) O be an ergodic transformation with pure point spectrum Gbar. Given a cocycle φ, φ: X → Z2, admitting an approximation with speed 0(1/n1+ε, ε>0) there exists a Morse cocycle φ such that the corresponding transformations τφ and τψ are relatively isomorphic. An effective way of a construction of the Morse cocycle φ is given. There is a cocycle φ oddly approximated with...