Balanced metrics and noncommutative Kähler geometry.
Given a complex Hilbert space H, we study the manifold of algebraic elements in . We represent as a disjoint union of closed connected subsets M of Z each of which is an orbit under the action of G, the group of all C*-algebra automorphisms of Z. Those orbits M consisting of hermitian algebraic elements with a fixed finite rank r, (0< r<∞) are real-analytic direct submanifolds of Z. Using the C*-algebra structure of Z, a Banach-manifold structure and a G-invariant torsionfree affine...
On montre l’équivalence entre l’hyperbolicité au sens de Gromov de la géométrie de Hilbert d’un domaine convexe du plan et la non nullité du bas du spectre de ce domaine.
We prove that the Quasi Differential of Bayoumi of maps between locally bounded F-spaces may not be Fréchet-Differential and vice versa. So a new concept has been discovered with rich applications (see [1–6]). Our F-spaces here are not necessarily locally convex
We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the formOur setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in and and of the Bernstein problem on the flatness of minimal area graphs in . A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our analysis. Our approach...
In this paper we will describe a set of roots of the Bernstein-Sato polynomial associated to a germ of complex analytic function in several variables, with an isolated critical point at the origin, that may be obtained by only knowing the spectral numbers of the germ. This will also give us a set of common roots of the Bernstein-Sato polynomials associated to the members of a -constant family of germs of functions. An example will show that this set may sometimes consist of all common roots.