The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
160
Given a compact manifold and real numbers and , we prove that the class of smooth maps on the cube with values into is strongly dense in the fractional Sobolev space when is simply connected. For integer, we prove weak sequential density of when is simply connected. The proofs are based on the existence of a retraction of onto except for a small subset of and on a pointwise estimate of fractional derivatives of composition of maps in .
Currently displaying 41 –
60 of
160