The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
194
Dans cet article nous proposons différents algorithmes pour résoudre une nouvelle classe de problèmes variationels non convexes. Cette classe généralise plusieurs types d’inégalités variationnelles (Cho et al. (2000), Noor (1992), Zeng (1998), Stampacchia (1964)) du cas convexe au cas non convexe. La sensibilité de cette classe de problèmes variationnels non convexes a été aussi étudiée.
Dans cet article nous proposons
différents algorithmes pour résoudre une nouvelle classe de
problèmes variationels non convexes. Cette classe généralise
plusieurs types d'inégalités variationnelles (Cho et
al. (2000), Noor (1992), Zeng (1998), Stampacchia
(1964)) du cas convexe au cas non convexe. La sensibilité
de cette classe de problèmes variationnels non convexes a été
aussi étudiée.
In this paper we prove the existence of solutions of a degenerate complex Monge-Ampére equation on a complex manifold. Applying our existence result to a special degeneration of complex structure, we show how to associate to a change of complex structure an infinite length geodetic ray in the space of potentials. We also prove an existence result for the initial value problem for geodesics. We end this paper with a discussion of a list of open problems indicating how to relate our reults to the...
In this paper, we construct a hyperkähler structure on the complexification of any Hermitian symmetric affine coadjoint orbit of a semi-simple -group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of . By a relevant identification of the complex orbit with the cotangent space of induced by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on compatible with...
The existence of infinitely many solutions for a mixed boundary value problem is established. The approach is based on variational methods.
Using Ricceri's variational principle, we establish the existence of infinitely many solutions for a class of two-point boundary value Kirchhoff-type systems.
Under no Ambrosetti-Rabinowitz-type growth condition, we study the existence of infinitely many solutions of the p(x)-Laplacian equations by applying the variant fountain theorems due to Zou [Manuscripta Math. 104 (2001), 343-358].
Using the critical point theory and the method of lower and upper solutions, we present a new approach to obtain the existence of solutions to a -Laplacian impulsive problem. As applications, we get unbounded sequences of solutions and sequences of arbitrarily small positive solutions of the -Laplacian impulsive problem.
Under a suitable oscillatory behavior either at infinity or at zero of the nonlinear term, the existence of infinitely many weak solutions for a non-homogeneous Neumann problem, in an appropriate Orlicz--Sobolev setting, is proved. The technical approach is based on variational methods.
We show that infinitesimal automorphisms and infinitesimal deformations of parabolic geometries can be nicely described in terms of the twisted de Rham sequence associated to a certain linear connection on the adjoint tractor bundle. For regular normal geometries, this description can be related to the underlying geometric structure using the machinery of BGG sequences. In the
locally flat case, this leads to a deformation complex, which generalizes the well known complex for locally conformally...
Currently displaying 41 –
60 of
194