Displaying 661 – 680 of 5443

Showing per page

Calculus of flows on convenient manifolds

Andrzej Zajtz (1996)

Archivum Mathematicum

The study of diffeomorphism group actions requires methods of infinite dimensional analysis. Really convenient tools can be found in the Frölicher - Kriegl - Michor differentiation theory and its geometrical aspects. In terms of it we develop the calculus of various types of one parameter diffeomorphism groups in infinite dimensional spaces with smooth structure. Some spectral properties of the derivative of exponential mapping for manifolds are given.

Calculus of variations with differential forms

Saugata Bandyopadhyay, Bernard Dacorogna, Swarnendu Sil (2015)

Journal of the European Mathematical Society

We study integrals of the form Ω f d ω , where 1 k n , f : Λ k is continuous and ω is a k - 1 -form. We introduce the appropriate notions of convexity, namely ext. one convexity, ext. quasiconvexity and ext. polyconvexity. We study their relations, give several examples and counterexamples. We finally conclude with an application to a minimization problem.

Canonical 1-forms on higher order adapted frame bundles

Jan Kurek, Włodzimierz M. Mikulski (2008)

Archivum Mathematicum

Let ( M , ) be a foliated m + n -dimensional manifold M with n -dimensional foliation . Let V be a finite dimensional vector space over 𝐑 . We describe all canonical ( ol m , n -invariant) V -valued 1 -forms Θ : T P r ( M , ) V on the r -th order adapted frame bundle P r ( M , ) of ( M , ) .

Canonical symplectic structures on the r-th order tangent bundle of a symplectic manifold.

Jan Kurek, Wlodzimierz M. Mikulski (2006)

Extracta Mathematicae

We describe all canonical 2-forms Λ(ω) on the r-th order tangent bundle TrM = Jr0 (R;M) of a symplectic manifold (M, ω). As a corollary we deduce that all canonical symplectic structures Λ(ω) on TrM over a symplectic manifold (M, ω) are of the form Λ(ω) = Σrk=0 αkω(k) for all real numbers αk with αr ≠ 0, where ω(k) is the (k)-lift (in the sense of A. Morimoto) of ω to TrM.

Canonical tensor fields of type (p,0) on Weil bundles

Jacek Dębecki (2006)

Annales Polonici Mathematici

We give a classification of canonical tensor fields of type (p,0) on an arbitrary Weil bundle over n-dimensional manifolds under the condition that n ≥ p. Roughly speaking, the result we obtain says that each such canonical tensor field is a sum of tensor products of canonical vector fields on the Weil bundle.

Currently displaying 661 – 680 of 5443