Certain sufficient conditions to be a complex projective space
Let be a smooth manifold, a local algebra in sense of André Weil, the manifold of near points on of kind and the module of vector fields on . We give a new definition of vector fields on and we show that is a Lie algebra over . We study the cohomology of -differential forms. Résumé. On considère une variété différentielle, une algèbre locale au sens d’André Weil, la variété des points proches de d’espèce et le module des champs de vecteurs sur . On donne une nouvelle...
Nous démontrons des inégalités de Morse-Witten asymptotiques pour la dimension des groupes de cohomologie des puissances tensorielles d’un fibré holomorphe en droites hermitien au-dessus d’une variété - analytique compacte. La dimension du -ième groupe de cohomologie se trouve ainsi majorée par une intégrale de courbure intrinsèque, étendue à l’ensemble des points d’indice de la forme de courbure du fibré. La preuve repose sur un théorème spectral qui décrit la distribution asymptotique des...
Dans la première partie de ce travail, on prouve l’existence de champs stratifiés dits totalement radiaux sur un ensemble stratifié abstrait (e.s.a.). Ces champs sont stables et peuvent être choisis continus sur les espaces stratifiés plongés qui sont -réguliers au sens de K. Bekka. Dans la seconde partie, on établit pour ces espaces un théorème de Poincaré-Hopf pour les champs totalement radiaux continus. On en déduit un résultat similaire pour les e.s.a.
Among all -algebras we characterize those which are algebras of -functions on second countable Hausdorff -manifolds.
We outline some of the tools C. Ehresmann introduced in Differential Geometry (fiber bundles, connections, jets, groupoids, pseudogroups). We emphasize two aspects of C. Ehresmann's works: use of Cartan notations for the theory of connections and semi-holonomic jets.
We use the concept of intrinsic metrics to give a new definition for an isoperimetric constant of a graph. We use this novel isoperimetric constant to prove a Cheeger-type estimate for the bottom of the spectrum which is nontrivial even if the vertex degrees are unbounded.