Displaying 1101 – 1120 of 5443

Showing per page

Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de Kontsevich-Zorich

Raphaël Krikorian (2003/2004)

Séminaire Bourbaki

Étant donnée une fonction régulière de moyenne nulle sur le tore de dimension 2 , il est facile de voir que ses intégrales ergodiques au-dessus d’un flot de translation “générique”sont bornées. Il y a une dizaine d’années, A. Zorich a observé numériquement une croissance en puissance du temps de ces intégrales ergodiques au-dessus de flots d’hamiltoniens (non-exacts) “génériques”sur des surfaces de genre supérieur ou égal à 2 , et Kontsevich et Zorich ont proposé une explication (conjecturelle) de...

Diastolic and isoperimetric inequalities on surfaces

Florent Balacheff, Stéphane Sabourau (2010)

Annales scientifiques de l'École Normale Supérieure

We prove a universal inequality between the diastole, defined using a minimax process on the one-cycle space, and the area of closed Riemannian surfaces. Roughly speaking, we show that any closed Riemannian surface can be swept out by a family of multi-loops whose lengths are bounded in terms of the area of the surface. This diastolic inequality, which relies on an upper bound on Cheeger’s constant, yields an effective process to find short closed geodesics on the two-sphere, for instance. We deduce...

Diffeology of the infinite Hopf fibration

Patrick Iglesias-Zemmour (2007)

Banach Center Publications

We introduce diffeological real or complex vector spaces. We define the fine diffeology on any vector space. We equip the vector space 𝓗 of square summable sequences with the fine diffeology. We show that the unit sphere 𝓢 of 𝓗, equipped with the subset diffeology, is an embedded diffeological submanifold modeled on 𝓗. We show that the projective space 𝓟, equipped with the quotient diffeology of 𝓢 by 𝓢¹, is also a diffeological manifold modeled on 𝓗. We define the Fubini-Study symplectic...

Diffeomorphisms conformal on distributions

Kamil Niedziałomski (2009)

Annales Polonici Mathematici

Let f:M → N be a local diffeomorphism between Riemannian manifolds. We define the eigenvalues of f to be the eigenvalues of the self-adjoint, positive definite operator df*df:TM → TM, where df* denotes the operator adjoint to df. We show that if f is conformal on a distribution D, then d i m V λ 2 d i m D - d i m M , where V λ denotes the eigenspace corresponding to the coefficient of conformality λ of f. Moreover, if f has distinct eigenvalues, then there is locally a distribution D such that f is conformal on D if and only...

Currently displaying 1101 – 1120 of 5443