Deuxième microlocalisation, condition de Lévi pour un système
Dans cet article, on définit le deuxième micro-support d’une distribution, le long d’une sous-variété isotrope de ; c’est un fermé d’un fibré sur , qui est canoniquement muni d’une structure symplectique, et qui contient le fibré cotangent à . On montre l’analogue du théorème du Water melon, et on applique les résultats obtenus à l’étude de la propagation des singularités des solutions, définies sur un ouvert , d’un opérateur de type principal réel , près d’une bicaractéristique de contenue...
On obtient ici le développement asymptotique, en temps petit et sur la diagonale, du noyau de la chaleur associé à un opérateur dégénéré du second ordre satisfaisant à la condition forte d’hypoellipticité de Hörmander.
Étant donnée une fonction régulière de moyenne nulle sur le tore de dimension , il est facile de voir que ses intégrales ergodiques au-dessus d’un flot de translation “générique”sont bornées. Il y a une dizaine d’années, A. Zorich a observé numériquement une croissance en puissance du temps de ces intégrales ergodiques au-dessus de flots d’hamiltoniens (non-exacts) “génériques”sur des surfaces de genre supérieur ou égal à , et Kontsevich et Zorich ont proposé une explication (conjecturelle) de...
We prove a universal inequality between the diastole, defined using a minimax process on the one-cycle space, and the area of closed Riemannian surfaces. Roughly speaking, we show that any closed Riemannian surface can be swept out by a family of multi-loops whose lengths are bounded in terms of the area of the surface. This diastolic inequality, which relies on an upper bound on Cheeger’s constant, yields an effective process to find short closed geodesics on the two-sphere, for instance. We deduce...
We introduce diffeological real or complex vector spaces. We define the fine diffeology on any vector space. We equip the vector space 𝓗 of square summable sequences with the fine diffeology. We show that the unit sphere 𝓢 of 𝓗, equipped with the subset diffeology, is an embedded diffeological submanifold modeled on 𝓗. We show that the projective space 𝓟, equipped with the quotient diffeology of 𝓢 by 𝓢¹, is also a diffeological manifold modeled on 𝓗. We define the Fubini-Study symplectic...
Let f:M → N be a local diffeomorphism between Riemannian manifolds. We define the eigenvalues of f to be the eigenvalues of the self-adjoint, positive definite operator df*df:TM → TM, where df* denotes the operator adjoint to df. We show that if f is conformal on a distribution D, then , where denotes the eigenspace corresponding to the coefficient of conformality λ of f. Moreover, if f has distinct eigenvalues, then there is locally a distribution D such that f is conformal on D if and only...