Displaying 1141 – 1160 of 5443

Showing per page

Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two

Tomasz Brzeziński (2015)

Colloquium Mathematicae

Two-dimensional integrable differential calculi for classes of Ore extensions of the polynomial ring and the Laurent polynomial ring in one variable are constructed. Thus it is concluded that all affine pointed Hopf domains of Gelfand-Kirillov dimension two which are not polynomial identity rings are differentially smooth.

Differentiation in Normed Spaces

Noboru Endou, Yasunari Shidama (2013)

Formalized Mathematics

In this article we formalized the Fréchet differentiation. It is defined as a generalization of the differentiation of a real-valued function of a single real variable to more general functions whose domain and range are subsets of normed spaces [14].

Dirac and Plateau billiards in domains with corners

Misha Gromov (2014)

Open Mathematics

Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C 2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C 0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry,...

Dirac operator on the standard Podleś quantum sphere

Ludwik Dąbrowski, Andrzej Sitarz (2003)

Banach Center Publications

Using principles of quantum symmetries we derive the algebraic part of the real spectral triple data for the standard Podleś quantum sphere: equivariant representation, chiral grading γ, reality structure J and the Dirac operator D, which has bounded commutators with the elements of the algebra and satisfies the first order condition.

Dirac operators on hypersurfaces

Jarolím Bureš (1993)

Commentationes Mathematicae Universitatis Carolinae

In this paper some relation among the Dirac operator on a Riemannian spin-manifold N , its projection on some embedded hypersurface M and the Dirac operator on M with respect to the induced (called standard) spin structure are given.

Dirac structures and dynamical r -matrices

Zhang-Ju Liu, Ping Xu (2001)

Annales de l’institut Fourier

The purpose of this paper is to establish a connection between various objects such as dynamical r -matrices, Lie bialgebroids, and Lagrangian subalgebras. Our method relies on the theory of Dirac structures and Courant algebroids. In particular, we give a new method of classifying dynamical r -matrices of simple Lie algebras 𝔤 , and prove that dynamical r -matrices are in one-one correspondence with certain Lagrangian subalgebras of 𝔤 𝔤 .

Disconnections of plane continua

Bajguz, W. (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

The paper deals with locally connected continua X in the Euclidean plane. Theorem 1 asserts that there exists a simple closed curve in X that separates two given points x , y of X if there is a subset L of X (a point or an arc) with this property. In Theorem 2 the two points x , y are replaced by two closed and connected disjoint subsets A , B . Again – under some additional preconditions – the existence of a simple closed curve disconnecting A and B is stated.

Currently displaying 1141 – 1160 of 5443