Displaying 1281 – 1300 of 5443

Showing per page

Equations de Fokker-Planck géométriques II : estimations hypoelliptiques maximales

Gilles Lebeau (2007)

Annales de l’institut Fourier

Nous donnons des résultats analytiques sur les propriétés de régularité du laplacien hypoelliptique de Jean-Michel Bismut et plus généralement sur les opérateurs P de type Fokker-Planck géométrique agissant sur le fibré cotangent Σ = T * X d’une variété riemannienne compacte X . En particulier, nous prouvons un résultat d’hypoellipticité maximale pour P , et nous en déduisons des bornes sur la localisation de ses valeurs spectrales.

Equidistribution of cusp forms on PSL 2 ( 𝐙 ) PSL 2 ( 𝐑 )

Dmitri Jakobson (1997)

Annales de l'institut Fourier

We prove a microlocal version of the equidistribution theorem for Wigner distributions associated to cusp forms on PSL 2 ( Z ) PSL 2 ( R ) . This generalizes a recent result of W. Luo and P. Sarnak who prove equidistribution on PSL 2 ( Z ) H .

Equivalence of differentiable functions, rational functions and polynomials

Masahito Shiota (1982)

Annales de l'institut Fourier

We show under some assumptions that a differentiable function can be transformed globally to a polynomial or a rational function by some diffeomorphism. One of the assumptions is that the function is proper, the number of critical points is finite, and the Milnor number of the germ at each critical point is finite.

Equivalence problem for minimal rational curves with isotrivial varieties of minimal rational tangents

Jun-Muk Hwang (2010)

Annales scientifiques de l'École Normale Supérieure

We formulate the equivalence problem, in the sense of É. Cartan, for families of minimal rational curves on uniruled projective manifolds. An important invariant of this equivalence problem is the variety of minimal rational tangents. We study the case when varieties of minimal rational tangents at general points form an isotrivial family. The main question in this case is for which projective variety Z , a family of minimal rational curves with Z -isotrivial varieties of minimal rational tangents...

Equivariant cohomology of the skyrmion bundle

Gross, Christian (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

The author constructs the gauged Skyrme model by introducing the skyrmion bundle as follows: instead of considering maps U : M SU N F he thinks of the meson fields as of global sections in a bundle B ( M , SU N F , G ) = P ( M , G ) × G SU N F . For calculations within the skyrmion bundle the author introduces by means of the so-called equivariant cohomology an analogue of the topological charge and the Wess-Zumino term. The final result of this paper is the following Theorem. For the skyrmion bundle with N F 6 , one has H * ( E G × G SU N F ) H * ( SU N F ) G S ( G ̲ * ) H * ( SU N F ) H * ( B G ) H * ( SU N F ) , where E G ( B G , G ) is the universal bundle...

Equivariant Embeddings of Differentiable Spaces

Rivas, R., González, J., De Salas, J. (2001)

Serdica Mathematical Journal

Given a differentiable action of a compact Lie group G on a compact smooth manifold V , there exists [3] a closed embedding of V into a finite-dimensional real vector space E so that the action of G on V may be extended to a differentiable linear action (a linear representation) of G on E. We prove an analogous equivariant embedding theorem for compact differentiable spaces (∞-standard in the sense of [6, 7, 8]).

Currently displaying 1281 – 1300 of 5443