The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we aim for a generalization of the Steenrod Approximation Theorem from [16, Section 6.7], concerning a smoothing procedure for sections in smooth locally trivial bundles. The generalization is that we consider locally trivial smooth bundles with a possibly infinite-dimensional typical fibre. The main result states that a continuous section in a smooth locally trivial bundles can always be smoothed out in a very controlled way (in terms of the graph topology on spaces of continuous...
The main result of the present paper is an exact sequence which describes the group of
central extensions of a connected infinite-dimensional Lie group by an abelian group
whose identity component is a quotient of a vector space by a discrete subgroup. A
major point of this result is that it is not restricted to smoothly paracompact groups
and hence applies in particular to all Banach- and Fréchet-Lie groups. The exact sequence
encodes in particular precise obstructions for a given Lie algebra...
Currently displaying 1 –
20 of
41