The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Let M be a complete Riemannian manifold, M ∈ ℕ and p ≥ 1. We prove that almost everywhere on x = (x1,...,xN) ∈ MN for Lebesgue measure in MN, the measure  μ ( x ) = 1 N ∑ k = 1 N δ x k has a uniquep–mean ep(x). As a consequence, if X = (X1,...,XN) is a MN-valued random variable with absolutely continuous law, then almost surely μ(X(ω)) has a unique p–mean. In particular if (Xn)n ≥ 1 is an independent sample of an absolutely continuous law in M, then the process ep,n(ω) = ep(X1(ω),...,Xn(ω)) is...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Suppose M is a noncompact connected n-manifold and ω is a good Radon measure of M with ω(∂M) = 0. Let ℋ(M,ω) denote the group of ω-preserving homeomorphisms of M equipped with the compact-open topology, and  the subgroup consisting of all h ∈ ℋ(M,ω) which fix the ends of M. S. R. Alpern and V. S. Prasad introduced the topological vector space (M,ω) of end charges of M and the end charge homomorphism , which measures for each  the mass flow toward ends induced by h. We show that the map  has...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 1 – 
                                        4 of 
                                        4