The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety is dense in the Hilbert space , where dμ denotes the volume form of M and the Gaussian measure on M.
Currently displaying 1 –
1 of
1