The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 124

Showing per page

Commutators of diffeomorphisms of a manifold with boundary

Tomasz Rybicki (1998)

Annales Polonici Mathematici

A well known theorem of Herman-Thurston states that the identity component of the group of diffeomorphisms of a boundaryless manifold is perfect and simple. We generalize this result to manifolds with boundary. Remarks on C r -diffeomorphisms are included.

Continuous transformation groups on spaces

K. Spallek (1991)

Annales Polonici Mathematici

A differentiable group is a group in the category of (reduced and nonreduced) differentiable spaces. Special cases are the rationals ℚ, Lie groups, formal groups over ℝ or ℂ; in general there is some mixture of those types, the general structure, however, is not yet completely determined. The following gives as a corollary a first essential answer. It is shown, more generally,that a locally compact topological transformation group, operating effectively on a differentiable space X (which satisfies...

Étude des Γ -structures de codimension 1 sur la sphère S 2

Claude Roger (1973)

Annales de l'institut Fourier

Cet article contient une démonstration géométrique simple de π 2 ( B Γ 1 r ) = 0 pour r = 0 , .Ce résultat (démontré aussi par Mather comme corollaire d’un théorème beaucoup plus général) apparaît comme une conséquence du théorème de Michael Herman : Diff S 1 [ Diff S 1 , Diff S 1 ] = 0 .L’appendice contient une étude des Γ structures sur les surfaces et un résultat sur la cohomologie de Diff S 1 .

Existence of permanent and breaking waves for a shallow water equation : a geometric approach

Adrian Constantin (2000)

Annales de l'institut Fourier

The existence of global solutions and the phenomenon of blow-up of a solution in finite time for a recently derived shallow water equation are studied. We prove that the only way a classical solution could blow-up is as a breaking wave for which we determine the exact blow-up rate and, in some cases, the blow-up set. Using the correspondence between the shallow water equation and the geodesic flow on the manifold of diffeomorphisms of the line endowed with a weak Riemannian structure, we give sufficient...

Currently displaying 21 – 40 of 124