The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 161 – 180 of 313

Showing per page

Liouville theorems for self-similar solutions of heat flows

Jiayu Li, Meng Wang (2009)

Journal of the European Mathematical Society

Let N be a compact Riemannian manifold. A quasi-harmonic sphere on N is a harmonic map from ( m , e | x | 2 / 2 ( m - 2 ) / d s 0 2 ) to N ( m 3 ) with finite energy ([LnW]). Here d s 2 0 is the Euclidean metric in m . Such maps arise from the blow-up analysis of the heat flow at a singular point. In this paper, we prove some kinds of Liouville theorems for the quasi-harmonic spheres. It is clear that the Liouville theorems imply the existence of the heat flow to the target N . We also derive gradient estimates and Liouville theorems for positive...

m -harmonic flow

Norbert Hungerbühler (1997)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Minimizing p -harmonic maps at a free boundary

Frank Duzaar, Andreas Gastel (1998)

Bollettino dell'Unione Matematica Italiana

Studiamo le proprietà di regolarità delle mappe fra varietà di Riemann che minimizzano la p -energia fra quelle che soddisfano una condizione di frontiera pazialmente libera. Proviamo che tali mappe sono Hölder continue vicino alla frontiera libera fuori di un insieme singolare, e otteniamo stime ottimali per la dimensione di Hausdorff di questo insieme singolare.

Currently displaying 161 – 180 of 313