The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 641 – 660 of 1378

Showing per page

A simple formula for an analogue of conditional Wiener integrals and its applications. II

Dong Hyun Cho (2009)

Czechoslovak Mathematical Journal

Let C [ 0 , T ] denote the space of real-valued continuous functions on the interval [ 0 , T ] with an analogue w ϕ of Wiener measure and for a partition 0 = t 0 < t 1 < < t n < t n + 1 = T of [ 0 , T ] , let X n C [ 0 , T ] n + 1 and X n + 1 C [ 0 , T ] n + 2 be given by X n ( x ) = ( x ( t 0 ) , x ( t 1 ) , , x ( t n ) ) and X n + 1 ( x ) = ( x ( t 0 ) , x ( t 1 ) , , x ( t n + 1 ) ) , respectively. In this paper, using a simple formula for the conditional w ϕ -integral of functions on C [ 0 , T ] with the conditioning function X n + 1 , we derive a simple formula for the conditional w ϕ -integral of the functions with the conditioning function X n . As applications of the formula with the function X n , we evaluate the conditional w ϕ -integral...

A simple proof of Fishburn's moments theorem.

María Lina Martínez García (1985)

Trabajos de Estadística e Investigación Operativa

We derive a necessary condition for stochastic dominance of any order based on the Laplace transform of probability measures on [0,∞) for which it follows easily Fishburn's theorem on the lexicographic order of the moments.

A Simpler Proof of the Negative Association Property for Absolute Values of Measures Tied to Generalized Orlicz Balls

Jakub Onufry Wojtaszczyk (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Negative association for a family of random variables ( X i ) means that for any coordinatewise increasing functions f,g we have ( X i , . . . , X i k ) g ( X j , . . . , X j l ) f ( X i , . . . , X i k ) g ( X j , . . . , X j l ) for any disjoint sets of indices (iₘ), (jₙ). It is a way to indicate the negative correlation in a family of random variables. It was first introduced in 1980s in statistics by Alem Saxena and Joag-Dev Proschan, and brought to convex geometry in 2005 by Wojtaszczyk Pilipczuk to prove the Central Limit Theorem for Orlicz balls. The paper gives a relatively simple proof of...

Currently displaying 641 – 660 of 1378