A theoretical argument why the -copula explains credit risk contagion better than the Gaussian copula.
This paper develops and analyzes a time-dependent optimal stopping problem and its application to the decision making process concerning organ transplants. Offers (organs for transplant) appear at jump times of a Poisson process. The values of the offers are i.i.d. random variables with a known distribution function. These values express the degree of histocompatibility between the donor and the recipient. The sequence of offers is independent of the jump times of the Poisson process. The decision...
In Benaïm and Ben Arous (2003) is solved a multi-armed bandit problem arising in the theory of learning in games. We propose a short and elementary proof of this result based on a variant of the Kronecker lemma.
In Benaïm and Ben Arous (2003) is solved a multi-armed bandit problem arising in the theory of learning in games. We propose a short and elementary proof of this result based on a variant of the Kronecker lemma.
Suppose that the process is observed sequentially. There are two random moments of time and , independent of X, and X is a Markov process given and . The transition probabilities of X change for the first time at time and for the second time at time . Our objective is to find a strategy which immediately detects the distribution changes with maximal probability based on observation of X. The corresponding problem of double optimal stopping is constructed. The optimal strategy is found...
We consider the coarse-graining of a lattice system with continuous spin variable. In the first part, two abstract results are established: sufficient conditions for a logarithmic Sobolev inequality with constants independent of the dimension (Theorem 3) and sufficient conditions for convergence to the hydrodynamic limit (Theorem 8). In the second part, we use the abstract results to treat a specific example, namely the Kawasaki dynamics with Ginzburg–Landau-type potential.
This article deals with the three classic policies for an M/G/1 queueing system (N, T, and D-policy). The optimum policies were compared in several precedent studies, but the comparison was performed employing different cost functions, so that the D-policy is superior to the N-policy when the cost function is based on the mean work-load, whilst the average queue length is used to show the superiority of the N-policy over the T-policy. In order to achieve a comparison of the three policies under...
Niemiro and Zieliński (2007) have recently obtained uniform asymptotic normality for the Bernoulli scheme. This paper concerns a similar problem. We show the uniform central limit theorem for a sequence of stationary random variables.
Given a two-dimensional fractional multiplicative process determined by two Hurst exponents and , we show that there is an associated uniform Hausdorff dimension result for the images of subsets of by if and only if .