Approximate Distributions of Order Statistics, with Applications to Nonparametric Statistics - R. D. Reiss.
This paper considers a distribution inventory system that consists of a single warehouse and several retailers. Customer demand arrives at the retailers according to a continuous-time renewal process. Material flow between echelons is driven by reorder point/order quantity inventory control policies. Our objective in this setting is to calculate the long-run inventory, backorder and customer service levels. The challenge in this system is to characterize the demand arrival process at the warehouse....
In this article we propose a method of parameters estimation for the class of discrete stable laws. Discrete stable distributions form a discrete analogy to classical stable distributions and share many interesting properties with them such as heavy tails and skewness. Similarly as stable laws discrete stable distributions are defined through characteristic function and do not posses a probability mass function in closed form. This inhibits the use of classical estimation methods such as maximum...
We present here the results of the investigation on approximation by the Poisson law of distributions of sums of random variables in the scheme of series. We give the results pertaining to the behaviour of large deviation probabilities and asymptotic expansions, to the method of cumulants, with the aid of which our results have been obtained.
We show a result of approximation in law of the d-parameter fractional Brownian sheet in the space of the continuous functions on [0,T]d. The construction of these approximations is based on the functional invariance principle.
In this paper we consider a symmetric α-stable Lévy process Z. We use a series representation of Z to condition it on the largest jump. Under this condition, Z can be presented as a sum of two independent processes. One of them is a Lévy process parametrized by x > 0 which has finite moments of all orders. We show that converges to Z uniformly on compact sets with probability one as x↓ 0. The first term in the cumulant expansion of corresponds to a Brownian motion which implies that can...