Displaying 1181 – 1200 of 10046

Showing per page

Approximation of finite-dimensional distributions for integrals driven by α-stable Lévy motion

Aleksander Janicki (1999)

Applicationes Mathematicae

We present a method of numerical approximation for stochastic integrals involving α-stable Lévy motion as an integrator. Constructions of approximate sums are based on the Poissonian series representation of such random measures. The main result gives an estimate of the rate of convergence of finite-dimensional distributions of finite sums approximating such stochastic integrals. Stochastic integrals driven by such measures are of interest in constructions of models for various problems arising...

Approximation of Reliability for a large system with non-markovian repair-times

Jean-Louis Bon, Jean Bretagnolle (2010)

ESAIM: Probability and Statistics

Consider a system of many components with constant failure rate and general repair rate. When all components are reliable and easily reparable, the reliability of the system can be evaluated from the probability q of failure before restoration. In [14], authors give an asymptotic approximation by monotone sequences. In the same framework, we propose, here, a bounding for q and apply it in the ageing property case.

Approximation of stochastic advection diffusion equations with stochastic alternating direction explicit methods

Ali R. Soheili, Mahdieh Arezoomandan (2013)

Applications of Mathematics

The numerical solutions of stochastic partial differential equations of Itô type with time white noise process, using stable stochastic explicit finite difference methods are considered in the paper. Basically, Stochastic Alternating Direction Explicit (SADE) finite difference schemes for solving stochastic time dependent advection-diffusion and diffusion equations are represented and the main properties of these stochastic numerical methods, e.g. stability, consistency and convergence are analyzed....

Approximation of stochastic differential equations driven by α-stable Lévy motion

Aleksander Janicki, Zbigniew Michna, Aleksander Weron (1997)

Applicationes Mathematicae

In this paper we present a result on convergence of approximate solutions of stochastic differential equations involving integrals with respect to α-stable Lévy motion. We prove an appropriate weak limit theorem, which does not follow from known results on stability properties of stochastic differential equations driven by semimartingales. It assures convergence in law in the Skorokhod topology of sequences of approximate solutions and justifies discrete time schemes applied in computer simulations....

Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet

Laure Coutin, Monique Pontier (2007)

ESAIM: Probability and Statistics

A stochastic “Fubini” lemma and an approximation theorem for integrals on the plane are used to produce a simulation algorithm for an anisotropic fractional Brownian sheet. The convergence rate is given. These results are valuable for any value of the Hurst parameters ( α 1 , α 2 ) ] 0 , 1 [ 2 , α i 1 2 . Finally, the approximation process is iterative on the quarter plane + 2 . A sample of such simulations can be used to test estimators of the parameters αi,i = 1,2.

Approximation of the marginal distributions of a semi-Markov process using a finite volume scheme

Christiane Cocozza-Thivent, Robert Eymard (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In the reliability theory, the availability of a component, characterized by non constant failure and repair rates, is obtained, at a given time, thanks to the computation of the marginal distributions of a semi-Markov process. These measures are shown to satisfy classical transport equations, the approximation of which can be done thanks to a finite volume method. Within a uniqueness result for the continuous solution, the convergence of the numerical scheme is then proven in the weak measure sense,...

Approximation of the marginal distributions of a semi-Markov process using a finite volume scheme

Christiane Cocozza-Thivent, Robert Eymard (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In the reliability theory, the availability of a component, characterized by non constant failure and repair rates, is obtained, at a given time, thanks to the computation of the marginal distributions of a semi-Markov process. These measures are shown to satisfy classical transport equations, the approximation of which can be done thanks to a finite volume method. Within a uniqueness result for the continuous solution, the convergence of the numerical scheme is then proven in the weak measure...

Approximation of the Snell envelope and american options prices in dimension one

Vlad Bally, Bruno Saussereau (2002)

ESAIM: Probability and Statistics

We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.

Approximation of the Snell Envelope and American Options Prices in dimension one

Vlad Bally, Bruno Saussereau (2010)

ESAIM: Probability and Statistics

We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.

Currently displaying 1181 – 1200 of 10046