The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 16 of 16

Showing per page

An algebraic approach to Pólya processes

Nicolas Pouyanne (2008)

Annales de l'I.H.P. Probabilités et statistiques

Pólya processes are natural generalizations of Pólya–Eggenberger urn models. This article presents a new approach of their asymptotic behaviour via moments, based on the spectral decomposition of a suitable finite difference transition operator on polynomial functions. Especially, it provides new results for large processes (a Pólya process is called small when 1 is a simple eigenvalue of its replacement matrix and when any other eigenvalue has a real part ≤1/2; otherwise, it is called large).

Asymptotics for the L p -deviation of the variance estimator under diffusion

Paul Doukhan, José R. León (2004)

ESAIM: Probability and Statistics

We consider a diffusion process X t smoothed with (small) sampling parameter ε . As in Berzin, León and Ortega (2001), we consider a kernel estimate α ^ ε with window h ( ε ) of a function α of its variance. In order to exhibit global tests of hypothesis, we derive here central limit theorems for the L p deviations such as 1 h h ε p 2 α ^ ε - α p p - 𝔼 α ^ ε - α p p .

Asymptotics for the Lp-deviation of the variance estimator under diffusion

Paul Doukhan, José R. León (2010)

ESAIM: Probability and Statistics

We consider a diffusion process Xt smoothed with (small) sampling parameter ε. As in Berzin, León and Ortega (2001), we consider a kernel estimate α ^ ε with window h(ε) of a function α of its variance. In order to exhibit global tests of hypothesis, we derive here central limit theorems for the Lp deviations such as 1 h h ε p 2 α ^ ε - α p p - I E α ^ ε - α p p .

Currently displaying 1 – 16 of 16

Page 1