The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
288
The hierarchy of chaotic properties of symmetric infinitely divisible stationary processes is studied in the language of their stochastic representation. The structure of the Musielak-Orlicz space in this representation is exploited here.
Our purpose is to investigate properties for processes with stationary and independent increments under -expectation. As applications, we prove the martingale characterization of -Brownian motion and present a pathwise decomposition theorem for generalized -Brownian motion.
The aim of this paper is to compare various criteria leading to the central limit theorem and the weak invariance principle. These criteria are the martingale-coboundary decomposition developed by Gordin in Dokl. Akad. Nauk SSSR188 (1969), the projective criterion introduced by Dedecker in Probab. Theory Related Fields110 (1998), which was subsequently improved by Dedecker and Rio in Ann. Inst. H. Poincaré Probab. Statist.36 (2000) and the condition introduced by Maxwell and Woodroofe in Ann. Probab.28...
A notion of a wide-sense Markov process of order k ≥ 1, , is introduced as a direct generalization of Doob’s notion of wide-sense Markov process (of order k=1 in our terminology). A base for investigation of the covariance structure of is the k-dimensional process . The covariance structure of is considered in the general case and in the periodic case. In the general case it is shown that iff is a k-dimensional WM(1) process and iff the covariance function of has the triangular property....
In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.
In this paper we prove a Central Limit Theorem for
standard kernel estimates of the invariant density of one-dimensional
dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence
for the variance of the estimator and a variation on the Lindeberg–Rio
method. We also give an extension in the case of weakly
dependent sequences in a sense introduced by Doukhan and Louhichi.
A procedure for testing occurrance of a transient change in mean of a sequence is suggested where inside an epidemic interval the mean is a linear function of time points. Asymptotic behavior of considered trimmed maximum-type test statistics is presented. Approximate critical values are obtained using an approximation of exceedance probabilities over a high level by Gaussian fields with a locally stationary structure.
Currently displaying 41 –
60 of
288