The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a response to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order , the size of the system, the “critical” hysteresis loop becomes random.
The following version of the two-player best choice problem is considered. Two players observe a sequence of i.i.d. random variables with a known continuous distribution. The random variables cannot be perfectly observed. Each time a random variable is sampled, the sampler is only informed whether it is greater than or less than some level specified by him. The aim of the players is to choose the best observation in the sequence (the maximal one). Each player can accept at most one realization of...
Spatially homogeneous random walks in with non-zero jump probabilities at distance at most , with non-zero drift in the interior of the quadrant and absorbed when reaching the axes are studied. Absorption probabilities generating functions are obtained and the asymptotic of absorption probabilities along the axes is made explicit. The asymptotic of the Green functions is computed along all different infinite paths of states, in particular along those approaching the axes.
In this paper we consider BSDEs with Lipschitz
coefficient reflected on two discontinuous (RCLL) barriers. In this
case, we prove first the existence and uniqueness of the solution,
then we also prove the convergence of the solutions of the penalized
equations to the solution of the RBSDE. Since the method used in the
case of continuous barriers (see Cvitanic and Karatzas, Ann. Probab.24 (1996) 2024–2056 and Lepeltier and San Martín, J. Appl. Probab.41 (2004) 162–175) does not
work, we develop...
Motivated by classical considerations from risk theory, we investigate boundary crossing problems for refracted Lévy processes. The latter is a Lévy process whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More formally, whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic differential equation dUt=−δ1{Ut>b} dt+dXt, where X={Xt : t≥0} is a Lévy...
Se estudia la representación de variables positivas en un movimiento browniano con deriva, mediante tiempos de espera minimales asociados a barreras. Se trata también la representación de procesos crecientes, discretos y continuos por la derecha.
Currently displaying 1 –
10 of
10