A note on stability of multivariate distributions.
In this note we give an elementary proof of a characterization for stability of multivariate distributions by considering a functional equation.
In this note we give an elementary proof of a characterization for stability of multivariate distributions by considering a functional equation.
Recently Balakrishnan and Iliopoulos [Ann. Inst. Statist. Math. 61 (2009)] gave sufficient conditions under which the maximum likelihood estimator (MLE) is stochastically increasing. In this paper we study test plans which are not considered there and we prove that the MLEs for those plans are also stochastically ordered. We also give some applications to the estimation of reliability.
In this note we consider the estimation of the differential entropy of a probability density function. We propose a new adaptive estimator based on a plug-in approach and wavelet methods. Under the mean error, , this estimator attains fast rates of convergence for a wide class of functions. We present simulation results in order to support our theoretical findings.
In statistics of stochastic processes and random fields, a moment function or a cumulant of an estimate of either the correlation function or the spectral function can often contain an integral involving a cyclic product of kernels. We define and study this class of integrals and prove a Young-Hölder inequality. This inequality further enables us to study asymptotics of the above mentioned integrals in the situation where the kernels depend on a parameter. An application to the problem of estimation...
2000 Mathematics Subject Classification: 60J80.In this work, the problem of the limiting behaviour of an irreducible Multitype Galton-Watson Branching Process with period d greater than 1 is considered. More specifically, almost sure convergence of some linear functionals depending on d consecutive generations is studied under hypothesis of non extinction. As consequence the main parameters of the model are given a convenient interpretation from a practical point of view. For a better understanding...
In this paper the computational complexity of the problem of the approximation of a given dissimilarity measure on a finite set by a -ultrametric on and by a Robinson dissimilarity measure on is investigared. It is shown that the underlying decision problems are NP-complete.
This paper investigates the continuity of projection matrices and illustrates an important application of this property to the derivation of the asymptotic distribution of quadratic forms. We give a new proof and an extension of a result of Stewart (1977).
La distribución de Behrens-Fisher generalizada se define como convolución de dos distribuciones t de Student y se relaciona con la distribución gamma invertida por medio de un teorema de representación como una mixtura, respecto del parámetro de escala, de distribuciones normales cuando la distribución de mezcla es la convolución de dos distribuciones gamma invertidas. Un resultado importante de este artículo establece que la distribución de Behrens-Fisher con grados de libertad impares es mixtura...
To each indefinite integral binary quadratic form , we may associate the geodesic in through the roots of quadratic equation . In this paper we study the asymptotic distribution (as discriminant tends to infinity) of the angles between these geodesics and one fixed vertical geodesic which intersects all of them.
In the paper, the problem of the existence of the maximum likelihood estimate and the REML estimate in the variance components model is considered. Errors in the proof of Theorem 3.1 in the article of Demidenko and Massam (Sankhyā 61, 1999), giving a necessary and sufficient condition for the existence of the maximum likelihood estimate in this model, are pointed out and corrected. A new proof of Theorem 3.4 in the Demidenko and Massam's article, concerning the existence of the REML estimate of...
There is an infinite exchangeable sequence of random variables {Xk}k∈ℕ such that each finitedimensional distribution follows a min-stable multivariate exponential law with Galambos survival copula, named after [7]. A recent result of [15] implies the existence of a unique Bernstein function Ψ associated with {Xk}k∈ℕ via the relation Ψ(d) = exponential rate of the minimum of d members of {Xk}k∈ℕ. The present note provides the Lévy–Khinchin representation for this Bernstein function and explores some...