Displaying 401 – 420 of 654

Showing per page

On the estimation of the autocorrelation function

Manuel Duarte Ortigueira (2010)

Discussiones Mathematicae Probability and Statistics

The autocorrelation function has a very important role in several application areas involving stochastic processes. In fact, it assumes the theoretical base for Spectral analysis, ARMA (and generalizations) modeling, detection, etc. However and as it is well known, the results obtained with the more current estimates of the autocorrelation function (biased or not) are frequently bad, even when we have access to a large number of points. On the other hand, in some applications, we need to perform...

On the estimation of the drift coefficient in diffusion processes with random stopping times.

Ramón Gutiérrez Jáimez, Aurora Hermoso Carazo, Manuel Molina Fernández (1986)

Trabajos de Estadística

This paper considers stochastic differential equations with solutions which are multidimensional diffusion processes with drift coefficient depending on a parametric vector θ. By considering a trajectory observed up to a stopping time, the maximum likelihood estimator for θ has been obtained and its consistency and asymptotic normality have been proved.

On the exact distribution of L1(vc) of Votaw.

Giorgio Pederzoli, Puspha N. Rathie (1987)

Trabajos de Estadística

This paper deals with the exact distribution of L1(vc) of Votaw. The results are given in terms of Meijer's G-function as well as in series form suitable for computation of percentage points.

On the extremal behavior of a Pareto process: an alternative for ARMAX modeling

Marta Ferreira (2012)

Kybernetika

In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order...

On the foundations of statistics and decision theory.

José M. Bernardo, Javier Girón (1983)

Trabajos de Estadística e Investigación Operativa

An elementary axiomatic foundation for decision theory is presented at a general enough level to cover standard applications of Bayesian methods. The intuitive meaning of both axioms and results is stressed. It is argued that statistical inference is a particular decision problem to which the axiomatic argument fully applies.

On the frequentist and Bayesian approaches to hypothesis testing.

Elías Moreno, F. Javier Girón (2006)

SORT

Hypothesis testing is a model selection problem for which the solution proposed by the two main statistical streams of thought, frequentists and Bayesians, substantially differ. One may think that this fact might be due to the prior chosen in the Bayesian analysis and that a convenient prior selection may reconcile both approaches. However, the Bayesian robustness viewpoint has shown that, in general, this is not so and hence a profound disagreement between both approaches exists. In this paper...

On the generalization and estimation for the double Poisson distribution.

Mohamed M. Shoukri (1982)

Trabajos de Estadística e Investigación Operativa

The bivariate forms of many important discrete probability distributions have been studied by many statisticians. The trinomial, the double Poisson, the bivariate negative binomial, and the bivariate logarithmic series distributions are in fact the bivariate generalizations of the well known univariate distributions. A systematic account of various families of distributions of bivariate discrete random variables have been given by Patil and Joshi (11), Johnson and Kotz (4), and Mardia (9) in their...

Currently displaying 401 – 420 of 654