On the generation of correlation matrices.
Let X be a countable discrete Abelian group, Aut(X) the set of automorphisms of X, and I(X) the set of idempotent distributions on X. Assume that α₁, α₂, β₁, β₂ ∈ Aut(X) satisfy . Let ξ₁, ξ₂ be independent random variables with values in X and distributions μ₁, μ₂. We prove that the symmetry of the conditional distribution of L₂ = β₁ξ₁ + β₂ξ₂ given L₁ = α₁ξ₁ + α₂ξ₂ implies that μ₁, μ₂ ∈ I(X) if and only if the group X contains no elements of order two. This theorem can be considered as an analogue...
We establish a decomposition of the Jensen-Shannon divergence into a linear combination of a scaled Jeffreys' divergence and a reversed Jensen-Shannon divergence. Upper and lower bounds for the Jensen-Shannon divergence are then found in terms of the squared (total) variation distance. The derivations rely upon the Pinsker inequality and the reverse Pinsker inequality. We use these bounds to prove the asymptotic equivalence of the maximum likelihood estimate and minimum Jensen-Shannon divergence...
In order to develop a general criterion for proving strong consistency of estimators in Statistics of stochastic processes, we study an extension, to the continuous-time case, of the strong law of large numbers for discrete time square integrable martingales (e.g. Neveu, 1965, 1972). Applications to estimation in diffusion models are given.
This paper presents a classification of statistical models using a simple and logical framework. Some remarks are made about the historical appearance of each type of model and the practical problems that motivated them. It is argued that the current stages of the statistical methodology for model building have arisen in response to the needs for more sophisticated procedures for building dynamic-explicative types of models. Some potentially important topics for future research are included.
The Lukacs property of the free Poisson distribution is studied. We prove that if free and are free Poisson distributed with suitable parameters, then + and are free. As an auxiliary result we compute the joint cumulants of and for free Poisson distributed . We also study the Lukacs property of the free Gamma distribution.
In the present work, we briefly analyze the development of the mathematical theory of records. We first consider applications associated with records. We then view distributional and limit results for record values and times. We further present methods of generation of continuous records. In the end of this work, we discuss some tests based on records.